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On the efficacy of coherence-based 

assessment of functional coupling between 

pools of motor units  
 

Abstract. We studied the impact of the extension of the 

convolutive data model of high-density electromyograms 

(hdEMG) on the accuracy of coherence estimation 

between the motor unit (MU) activity indices (AI) 

calculated from different heads of biceps brachii (BB) (in 

simulated conditions) and gastrocnemius lateralis (GL) 

and medialis (GM) muscle in 5 young, healthy subjects. 

AI was calculated for each muscle head (simulated 

conditions) or muscle (experimental conditions). 

Coherence was calculated on 1 s long epochs of AI and 

compared to coherence values calculated from amplitude 

envelops (AE) of hdEMG and Cumulative Spike Trains 

(CST) calculated from individual MUs as identified by 

decomposition of hdEMG. Coherence values in AI 

(0.98±0.02 in synthetic and 0.49±0.20 in experimental 

conditions) were significantly higher than in the AE 

(0.89±0.07 in synthetic and 0.23 ± 0.15 in experimental 

conditions) and CST (0.83±0.11 in synthetic and 0.20 ± 

0.10 in experimental conditions). The optimal extension 

factors were relatively high (>80), especially when 

compared to those for hdEMG decomposition (typically 

around 15). The reasons for this are not yet fully known 

and need further investigation.  

 

1 Introduction 

 In human movement science, functional coupling 

between the pools of motor units (MUs) has gained 

considerable attention in recent years, revealing common 

behaviour of MUs from different muscles and/or 

different behaviour of MUs from the same skeletal 

muscle (i.e. functional clusters of MUs) [5]. Different 

approaches to functional coupling assessment have been 

proposed. Still, coherence between the cumulative spike 

trains (CST) of MUs identified from high-density 

electromyograms (hdEMG) remains among the most 

accurate and frequently used ones [9][10]. However, its 

performance depends on the number of identified MUs 

[10], which is difficult to guarantee in all the 

experimental conditions.  

 Recently, we proposed using the activity index (AI) 

instead of CST [7][9] when estimating coherence. 

Similar to the CST, the AI compensates the shapes of 

Motor Unit Action Potentials (MUAPs) in the hdEMG 

but does not aim to identify the contributions of 

individual MUs. Instead, it directly estimates the 

smoothed (low-pass filtered) version of CST of all the 

MUs, which are active in the detection volume of the 

uptake hdEMG electrodes. The latter is usually 

considerably larger than the number of MUs identifiable 

from hdEMG [8]. The reason for this lies in the relatively 

small selectivity of hdEMG electrodes and, 

consequently, many small and/or deep MUs that 

contribute small MUAPs to the hdEMG. These MUs are 

not identifiable but rather contribute to the physiological 

noise. Also important, MUs that share the size, territory 

in the muscle tissue, location of the innervation zone and 

MUAP propagation velocity (i.e., conduction velocity), 

are very difficult to discriminate by hdEMG 

decomposition and get merged in the identified MU spike 

trains [8]. All these factors are hindering the number of 

individual MUs that can be identified by hdEMG 

decomposition.  

 As discussed in this contribution and in [9], MUAP 

compensation in AI and CST contributes to a more 

accurate coherence estimate. But MUAP compensation 

depends on the extension factor, i.e., the number of 

delayed repetitions of each hdEMG channel added in a 

preprocessing step. In this study, we investigated how 

much the extension factor influences the coherence 

estimation between pools of MUs.  

 

2 Methods 

2.1 Synthetic hdEMG 

 Synthetic hdEMG signals were generated by the 

cylindrical volume conductor model [1]. Two heads of 

Biceps Brachi (BB) muscle were simulated, each 

containing 200 MUs. 20 s of 9×10 sEMG channels were 

simulated and sampled at 2048 Hz. MU recruitments and 

discharges were generated using the model proposed in 

[2]. Constant excitation of 10%, 30% and 50% of 

maximum voluntary contraction (MVC) were simulated. 

10 Hz sinusoidal modulation with an amplitude of 5% of 

MVC was superimposed. This resulted in the 

synchronisation of MU discharge patterns at 10 Hz.  

 

2.2 Experimental hdEMG 

 Experimental hdEMG signals were acquired from 

gastrocnemius medialis (GM) and lateralis (GL) muscles 

during plantar flexion in 5 healthy young persons (age: 
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32±4 years). The study procedures were in accordance 

with the Declaration of Helsinki and were approved by 

the Medical Ethics Committee of the Republic of 

Slovenia (0120-84/2020/4). The procedures were 

explained to the participants, who gave written informed 

consent prior to their participation. 20 s long contractions 

at 10%, 30%, and 15 s long contractions at 50% and 70% 

of MVC were recorded by a hdEMG array of 13×5 

electrodes (OT Bioelettronica, Torino, Italy), placed over 

each investigated muscle. The signals were amplified and 

sampled at 2048 Hz and 16-bit resolution (Quattrocento, 

OT Bioelettronica, Torino, Italy).   

 

2.3 CKC Decomposition & Activity Index  

 In isometric non-fatiguing contractions, the hdEMG 

signals can be modelled as: 

 

 𝒚(𝑛) = 𝐇𝐭(𝑛) +  𝝎(𝑛) (1) 

 

where 𝒚(𝑛) = [𝑦1(𝑛), 𝑦1(𝑛 + 1), … , 𝑦1(𝑛 + 𝐹 − 1),
𝑦2(𝑛), … , 𝑦𝑀(𝑛 − 𝐹 + 1)]  is vector of extended hdEMG 

channels at time sample n, F is extension factor, 𝐇̅ =

[𝐇𝟏
̅̅ ̅̅ … 𝐇𝐉

̅̅ ̅] with  

 

 𝐇𝒋
̅̅ ̅ = [

ℎ1j
̅̅ ̅̅ (0) … ℎ1j

̅̅ ̅̅ (𝐿)

⋮     ⋱ ⋮
ℎMj
̅̅ ̅̅̅(0) … ℎMj

̅̅ ̅̅̅(𝐿)
] (2) 

 

is a matrix of MUAPs, whereat ℎij
̅̅ ̅(𝑙) is the l-th sample 

of the MUAP from the j-th MU as detected in the i-th 

extended hdEMG channel. L is MUAP length in samples 

and  M is the number of EMG channels. 𝐭(𝑛) is a vector 

of spike trains from J MUs, active in the detection 

volume of uptake electrodes at time sample n: 

 

 𝑡j(n) = ∑ 𝛿 (𝑛 − 𝜏j(𝑘))k  (3) 

 

with 𝛿(. ) denoting the unit response. 𝝎(𝑛) is additive 

noise vector at sample n.  

 The Convolution Kernel Compensation (CKC) 

method [3] estimates the j-th MU spike train as: 

 

 𝑡𝑗̂(𝑛) = 𝒄𝑡𝑗𝒚
𝑇 𝑪𝒚

−1𝒚(𝑛) ≈ 𝒄𝑡𝑗𝒕
𝑇 𝑪𝒕

−1𝒕(𝑛) (4) 

 
where 𝑪𝒚 and 𝑪𝒕̅ denote the correlation matrix of 

extended hdEMG channels and MU spike trains, 

respectively, and 𝒄𝑡𝑗𝒚
𝑇  denotes the blindly estimated 

vector of cross-correlations between the j-th MU spike 

train 𝑡𝑗(𝑛) and all hdEMG channels [3]. For clarity, the 

contribution of noise has been discarded. MU spike trains 

are then manually inspected, assessed for the accuracy of 

MU identification [4] and edited by experts. The resulting 

MU spike trains are summed up to form CST [11]. 

 The MU activity index (AI) is defined as [3][7]: 

 

𝐴𝐼(𝑛) = 𝒚(𝑛)𝑇𝑪𝒚
−𝟏𝒚(𝑛) ≈ 𝒕̅(𝑛)𝑇𝑪𝒕̅

−𝟏𝒕̅(𝑛)  (5) 

The AI compensates the MUAPs in H and reveals the 

CST of all the MUs in the detection volume. However, 

the compensation of H in Eq. (5) depends on the 

extension factor F and many other factors, including the 

anatomic properties of the investigated muscle and the 

electrical properties of uptake electrodes. In this study, 

we tested extension factors F between 1 and 5 (in 

increments of 1) and between 10 and 100 (in increments 

of 5).  

 In addition to AI and CST, we calculated the 

amplitude envelopes (AE) as an average rectified 

hdEMG value across all the hdEMG channels per 

muscle.  

 

2.4 Coherence and Statistical Analysis 

 We calculated the AI, AE and CST for each 

investigated muscle (BB head in synthetic conditions) 

separately. Afterwards, we calculated the coherence 

between AIs, AEs and CSTs, revealing the functional 

coupling between the MU pools in these investigated 

muscles. In this study, we calculated the coherence across 

non-overlapping 1 s long epochs of activity indices.   

 Statistical analysis was conducted in Matlab, using 

the linear mixed effects (LME) models and taking the 
contraction level, extension factor F and hdEMG 

processing method (CST, AI or AE) as fixed factors and 

subjects (simulated muscles) as a random factor.  

 

3 Results 

3.1 Synthetic hdEMG 

 On average, 19±6 MUs were identified from each 

simulated BB head. Correlation among the identified AIs 

(one from each BB head) significantly depended on the 

extension factor F, and coherence increased up to 

extension factor F=80 (Figure 1). At an extension factor 

of F=80, AI exhibited significantly higher coherence 

value (0.978±0.016) than AE (0.886±0.072, p<0.0001) 

and CST (0.832±0.114, p<0.0001) (Figure 2 [6]). In AI, 

the coherence value of 0.89 was exceeded already at the 

extension factor of F = 1, demonstrating the superiority 

of AI over the AE.  

 

3.2 Experimental hdEMG 

 On average, 12±8 and 4±3 MUs were identified from 

GM and GL, respectively. Noteworthy, the number of 

MUs identified from GL muscle was relatively low. This 

likely resulted in a decreased ability to estimate 

coherence from CST. Coherence between AIs increased 

significantly up to the extension factor F=100 (Figure 2).  

As depicted in Figure 4 [6], at an extension factor of 

F=100, AI (0.49 ± 0.20) exhibited significantly higher 

coherence values than AE (0.23 ± 0.15, p<0.001) and 

CST (0.20 ± 0.10, p<0.001). In AI, the average coherence 

value of 0.23 (average coherence value of AE) was 

exceeded at the extension factor of F = 15. 



588

 

 

4 Discussion 

 We compared techniques for estimating muscle 

activity from hdEMG, namely, amplitude envelops (AE), 

CSTs as calculated from individual MUs identified by 

hdEMG decomposition and activity index (AI). CST and 

AI compensate for MUAP shapes and, therefore, expose 

the properties of MU spike trains and discharge patterns.  

 

On the other hand, the AE mixes spectral properties of 

MUAPs and MU spike trains. As MUAPs depend on the 

anatomical properties of investigated skeletal muscle, on 

the muscle geometry and the properties of uptake 

hdEMG electrodes, they hinder the information from the 

central nervous system that is reflected in the MU spike 

trains.  

 

Figure 2. Violin plots comparing coherence estimation 

between the two heads of BB (synthetic hdEMG). AI was 

calculated using an extension factor of F = 80. 
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Figure 4. Violin plots comparing coherence estimation 

between GM and GL using AI, CST, and AE methods. AI was 

calculated using an extension factor of F = 100. 
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Figure 1. Impact of the extension factor F on the coherence between AIs from both BB heads (synthetic hdEMG);                       

* - p<0.05,   ** - p<0.01,   *** - p<0.001 

 

Figure 3. Impact of the extension factor F on the coherence between AIs from GM and GL muscle (experimental hdEMG);           

* - p<0.05,   ** - p<0.01,    *** - p<0.001 
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Compensation of MUAP shapes in CST and AI is rarely 

perfect. Indeed, hdEMG contains many more MUs active 

in the detection volume of uptake electrodes than the 

number of hdEMG channels. Consequently, the mixing 

matrix H has many more columns than rows and cannot 

be fully compensated in Eqs. (4) and (5). The level of its 

compensation depends on the extension factor F. For MU 

identification from hdEMG, the impact of extension 

factor F has been well investigated, demonstrating the 

optimal values of F in the range from 10 to 20 [3][4][10]. 

For AI, the impact of the extension factor is less clear and 

needs further investigation. Namely, AI contains the 

contributions of many more active MUs than CST.  

 In this study, we calculated the coherence between 

two heads of BB muscle (synthetic hdEMG) and GM and 

GL muscle (experimental hdEMG). We demonstrated 

that for AI, the optimal values of the extension factor 

extend well above the ones recommended for hdEMG 

decomposition. In synthetic cases, the coherence plateau 

was reached at extension factor F=80. In experimental 

conditions, it extended even further, all the way to F=100. 

The reasons for such a high F value are not fully 

understood and need further investigation. Although the 

coherence would likely increase in experimental 
conditions with F>100, we limited our investigation to 

the maximal value of F=100. The reason for this lies in 

the computational complexity of AI calculation. The 

latter grows quadratically with F. Indeed, on a personal 

computer with the Intel CORE i9 (9th Gen) processor and 

32 GB of memory, the AI calculation at F=1 and F=100 

required 0.43 ± 0.08 s and 82.8 ± 4.3 s, respectively. Note 

that the longest processing times of AI still represent 

relatively small processing costs compared to MU 

identification from hdEMG, which typically requires 10 

minutes. 

 AI significantly outperformed both AE and CST 

methodologies, already at much smaller than the optimal 

values of the extension factor F. The reasons for the 

inferior performance of AE likely originate from the lack 

of compensation for MUAPs, as already discussed. The 

performance of CST depends on the number of identified 

MUs. The latter was relatively low in our study, 

especially for GL muscle. Indeed, the number of 

identified MUs is frequently low, especially in proximal 

skeletal muscles or anatomically complex muscles, such 

as erector spinae or pectoralis muscle. In these muscles, 

the large number of active MUs and intensive low-pass 

filtering of adipose tissue hinder the identification of 

individual MUs [8]. Therefore, alternative methods that 

compensate for the negative effect of MUAPs but do not 

depend on individual MU identification are required. One 

of the possible approaches presented in this study is AI. 
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