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Manual editing significantly improves the
accuracy of motor unit recruitment
threshold and discharge rate assessment
from synthetic high-density surface
electromyograms

Abstract. This study examined the influence of manual
editing on the accuracy of motor unit (MU) metrics
derived from high-density surface EMG. Seven operators
with varying levels of experience manually edited
synthetic datasets from the Soleus and Biceps Brachii.
We then calculated recruitment threshold (ReTh),
derecruitment threshold (DeTh), discharge rate (DR),
recruitment discharge rate (ReDR), and derecruitment
discharge rate (DeDR) before and after editing. The
effects of operator’s experience, contraction level, initial
pulse-to-noise ratio (PNR), signal-to-noise ratio (SNR),
muscle type, and editing status were analyzed.

Manual editing significantly improved accuracy only
for ReTh and DR, whereas with other metrics, it only had
a minor, insignificant effect. Higher initial PNR
consistently reduced errors across all metrics.
Contraction level strongly influenced all metrics,
whereas muscle type and SNR had minimal impact—SNR
was significant only for DeTh, and muscle type only for
ReTh. Operator’s experience did not significantly affect
any metric. Overall, these results indicate that manual
editing is critical for reliable estimation of ReTh and DR,
but less essential for DeDR, particularly when initial
PNR is high.

1 Introduction

Automatic decomposition methods for high-density
electromyography (hdEMG) lack awareness of the
experimental protocol or subject-specific factors [10],
often making manual editing of decomposition results
necessary. Manual editing is the process where operators
carefully inspect all decomposed motor units (MUs) and
correct errors that arise during the automatic
segmentation. The algorithm may misclassify MU pulses
as noise, or vice versa, due to the interference from other
MUs or background noise. During manual editing,
operators fix these segmentation errors by adding
missing pulses or removing duplicates. They also
eliminate low-quality MUs—those dominated by noise
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or with too few discharges to be reliable. In cases where
different MUs have very similar action potential shapes,
the algorithm may incorrectly merge them into a single
MU. Operators then need to separate these merged MU s,
ensuring their accurate and complete representation.

Although the importance of manual editing has been
acknowledged, there is still a limited understanding of
how this editing process affects commonly used MU
metrics. Typically, MU recruitment is assessed through
recruitment threshold (ReTh) and recruitment discharge
rate (ReDR) [12], whereas MU derecruitment is
evaluated using derecruitment threshold (DeTh) and
derecruitment discharge rate (DeDR) [13].

Previous research [5], [11] has shown that effective
manual editing demands substantial expertise, leading to
the development of various tutorials [10], [4]. Despite
these resources, editing results can vary significantly
between operators, influenced by factors such as pulse-
to-noise ratio (PNR) [14], operator’s experience, and
occasionally the muscle under study. At the same time,
automatic decomposition is constantly improving,
gradually decreasing the need for manual editing.

However, the implications of these differences for
MU metric accuracy remain unclear. Specifically, it is
not fully understood how critical expert knowledge is,
and what level of error occurs if signals remain manually
unedited. In this study, we examined the impact of
manual editing on the accuracy of the most commonly
analysed MU metrics.

2 Methods

We generated synthetic hdEMG signals using 13%21
and 10x9 electrode arrays for the Soleus (SO) and Biceps
Brachii (BB), respectively, with an interelectrode
distance of 5 mm. We simulated 200 MUs for the SO
using the simulator from [1], and 500 MUs for the BB
using the simulator from [2]. Two separate muscle
realizations were created for each muscle, with MU
territories randomly distributed in each realization.

MU discharge patterns followed the model described
in [3]. MU sizes and recruitment thresholds were
sampled from exponential distributions, resulting in
many small, low-threshold MUs and progressively fewer
large, high-threshold MUs. Contraction durations were
set to 20 seconds, with contraction intensities at 10%,
30%, 50%, and 70% of the maximum voluntary
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contraction (MVC). We added the colored noise
(bandwidth 20-500 Hz) to the generated signals, creating
signals with three different signal-to-noise ratios (SNRs):
15 dB, 20 dB, and infinite (no noise). In total, 48
synthetic signals were produced, with 24 corresponding
to each muscle.

All signals were decomposed automatically using the
Convolution Kernel Compensation (CKC) method [6],
implemented in the DEMUSE tool (version 6.0,
University of Maribor, Slovenia). The decomposition
was performed with the following settings: 50 runs per
decomposition, band-pass filtering of the hdEMG signals
using a 4th-order Butterworth filter with a 20-500 Hz
passband, no spatial filtering, and automatic selection of
the top 95% highest-quality hdEMG channels. The CKC
decomposition identified an average of 17.6 + 3.5 MUs
for the SO muscle and 8.6 + 3.8 MUs for the BB muscle.
The average initial PNR values were 40.1 + 12 dB for SO
and 33.4 + 8.9 dB for BB.

Seven human operators (they are all listed as
coauthors) with different levels of experience edited the
signals. The level of experience was determined by the
number of previously edited signals; therefore, we
included two beginners, who had edited fewer than 50
signals, three semi-experienced operators, who had
edited 51-1000 signals, and two experts, who had edited
more than 1000 signals [5]. Before the editing procedure,
human operators were given a written tutorial [4] to
standardise the editing process.

MVC (%)

(MVC %)

Figure 1. A) A visual representation of MU, its pulse train,
discharges, and simulated excitation, along with marked
discharges that were accounted for in the calculation of DR. B),
C) A visualised representation of ReTh and DeTh with marked
discharges that were accounted for in the calculation of reDR
and deDR.

While human operators were editing the signals, log
files were automatically created, saving all the used
actions with a corresponding time stamp, allowing us to
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precisely calculate the editing time [5]. We inspected the
ReTh, DeTh, discharge rate (DR), ReDR, and DeDR of
signals before and after editing.

The DR was calculated by dividing the total number
of discharges by the signal duration in seconds (Fig. 1A).
The ReTh and DeTh were defined as the force level at the
time of the first and the last discharge, respectively. The
ReDR and DeDR were computed as the DR based on the
first and last four MU discharges, respectively (Fig. 1B,
Fig. 1C).

ReTh, DeTh, DR, ReDR, and DeDR were evaluated
for all signals before and after manual editing and
compared to the ground truth values obtained from the
simulated reference signals. Errors were quantified as the
absolute difference between measured and reference
values.

Statistical analyses were conducted in R (version
4.2.2; R Foundation for Statistical Computing, Vienna,
Austria) using linear mixed models (LMMs)
implemented in the Ime4 package [7]. The LMMs
included the initial PNR value as a continuous fixed
effect, muscle, operator’s experience, SNR, and whether
the signal was edited or not (editing status) as categorical
fixed effects, and contraction level as an ordered fixed
effect. Simulated subject ID and operators’ ID were
included as random intercepts to account for within-
subject and within-operator variability. Separate models
were fitted for each outcome variable: ReTh, DeTh, DR,
ReDR, and DeDR.

Data distribution was evaluated using histograms,
quantile-quantile plots of residuals, and plots of raw
residuals against lagged residuals. Statistical significance
was defined at a p-value threshold of 0.05 and assessed
using the ANOVA function from the lmerTest package
[8]. Pairwise post hoc comparisons of estimated marginal
means were conducted using the Tukey adjustment for
multiple testing, implemented via the emmeans package

[9].
3 Results

Table 1. Mean + standard deviation (AVG = SD) of assessment
errors for all outcome variables (ReTh, DeTh, DR, ReDR, and
DeDR), excluding zero-value errors. Percentages of errors are
shown in parentheses.

Unedited Edited
(AVG = SD) (AVG £SD)
ReTh error 2.2+3.1(10%) 2.6 £ 3.8 (6%)
(% MVC)
DeTh error 1.8£2.5 (8%) 3+£3.7(5%)
(% MVC)
DR error 0.8 £ 1.5 (70%) 0.3+0.7 (17%)
(Hz)
ReDR error 0.1 0.4 (13%) 0.2 £0.5 (6%)
(Hz)
DeDR error 0.1 +0.4 (13%) 0.2 +0.5 (6%)
(Hz)

On average, operators needed 39 + 87 s for editing
signals from BB, and 25 + 65 s for signals from SO. The



ReTh error was influenced by the contraction level (p =
0.003, F = 4.6), with significantly higher error at 10%
compared to 30% of MVC (p = 0.0006; Figure 2A).
Muscle type also significantly (p = 0.0002, F = 13.1)
affected the ReTh, with error being lower for the BB
compared to the SO (p =0.0003). Additionally, the initial
PNR was negatively correlated with the ReTh error (p <
0.0001, F = 151.2). Editing status was significant (p =
0.009, F = 6.8), indicating that manual editing reduced
errors (p = 0.009; Figure 3A; Table 1). In contrast, the
operator’s experience (p = 0.7175, F = 0.5) and SNR (p
=0.2215, F = 1.5) did not significantly affect the ReTh
error.

The DeTh error was significantly affected by the
contraction level (p = 0.0354, F = 2.9), with lower error
observed at 10% compared to 50% of MVC (p =0.0011;
Figure 2B). The initial PNR was positively correlated
with the DeTh error (p < 0.0001, F = 52.8), and the SNR
also had a significant effect (p < 0.0001, F = 10.1), with
lower errors at Inf dB compared to 15 dB (p < 0.0001)
and 20 dB (p = 0.0139). In contrast, muscle type (p =
0.72, F = 0.2), operator’s experience (p = 0.5886, F =
0.6), and editing status (p = 0.9123, F = 0.1; Figure 3B;
Table 1) did not significantly influence the DeTh error.
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Figure 2. Comparison of A) Recruitment threshold (ReTh), B)
Derecruitment Threshold (DeTh), C) Discharge rate (DR), and
D) Recruitment discharge rate (ReDR) of different contraction
levels as accumulated across the simulated muscle BB and SO.
Black vertical whiskers denote estimated marginal means with
95% confidence intervals; Horizontal lines indicate significant
differences: * p < 0.05, ** p <0.01, *** p <0.001.

Contraction level significantly affected the DR error
(p < 0.0001, F = 18.6), with lower errors observed at
lower than higher contraction levels. Significant
differences were found when comparing 10% to 50% (p
< 0.0001) and 70% (p < 0.0001), as well as when
comparing 30% to 50% (p < 0.0001) and 70% (p =0.001)
of MVC as visualized in Figure 2C. The initial PNR was
negatively correlated with the DR error (p < 0.0001, F =
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331). Editing status also had a significant effect (p <
0.0001, F = 636.7), with lower errors observed after
manual editing compared to before (p < 0.0001; Figure
3C; Table 1). In contrast, muscle type (p = 0.0556, F =
12.5), operator’s experience (p = 0.8539, F = 0.2), and
SNR (p =0.2303, F = 1.5) did not significantly influence
the DR error.

The ReDR error was significantly influenced by the
contraction level (p = 0.0388, F = 2.8), with higher errors
observed at higher contraction levels. There was a
significant difference between 70% and 50% (p = 0.0487;
Figure 2D) of MVC. The initial PNR was negatively
correlated with the ReDR error (p < 0.0001, F = 39.4).
Muscle type (p = 0.7915, F = 0.1), operator’s experience
(p = 0.6355, F = 0.5), SNR (p = 0.0598, F = 2.8), and
editing status (p = 0.5197, F = 0.4; Figure 3D; Table 1)
did not significantly affect the ReDR error.

The DeDR error was positively correlated with the
contraction level (p < 0.0001, F = 16) and negatively
correlated with the initial PNR (p < 0.0001, F = 25.9).
The error was highest at 70% compared to 10% (p <
0.0001), 30% (p < 0.0001), and 50% of MVC (p <
0.0001). No significant effects were found for muscle
type (p = 0.6595, F = 0.3), operator’s experience (p =
0.589, F = 0.6), SNR (p = 0.1267, F = 2.1), or editing
status (p = 0.3686, F = 0.8; Table 1).
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Figure 3. Comparison of A) Recruitment threshold (ReTh), B)
Derecruitment Threshold (DeTh), C) Discharge rate (DR), and
D) Recruitment discharge rate (ReDR) of edited and unedited
signals. Black vertical whiskers denote estimated marginal
means with 95% confidence intervals; Horizontal lines indicate
significant differences: * p <0.05, ** p <0.01, *** p <0.001.

4 Discussion

In this study, we showed that manual editing of
hdEMG decomposition results reduces errors in key MU
metrics, particularly DR and ReTh. In contrast, the
effects on DeTh, ReDR, and DeDR were less
pronounced. Additionally, initial PNR consistently



correlated with assessment accuracy across all evaluated
parameters, which aligns with its established role as a
metric of MU identification accuracy [14]. The
contraction level also influenced all MU metrics, where
higher errors were induced by higher contraction levels
for ReTh and by lower contraction levels for DeTh, DR,
ReDR, and DeDR. Higher contraction levels in most
cases increase the DR, number of active MUs, and MU
crosstalk, causing the manual editing to become more
challenging and therefore more prone to errors for most
of the MU metrics.

These findings align with previous reports
highlighting the necessity of manual editing in
decomposition workflows [5], [11], and extend current
knowledge by quantifying the error reduction across a
specific MU metric. While prior studies have noted
variability in decomposition results between operators
[5], our results show that, despite such variability,
manual editing systematically improves the accuracy of
MU analysis, particularly under conditions of lower PNR
and higher contraction levels.

From a practical perspective, our findings suggest
that manual editing remains a critical step in hdEMG
decomposition, particularly when precise DR and ReTh
assessments are required. However, in datasets with high
initial PNR, the relative benefits of editing may be
reduced, indicating a potential threshold above which
manual editing may be deprioritized without
substantially compromising accuracy.

This study has several limitations, including the
analysis only having been performed on synthetic
hdEMG signals (synthetic SO and BB muscles), where
MU spike trains are usually more accurately identified by
the automatic decomposition with higher initial PNR
compared to the experimental signals.

In conclusion, manual editing substantially improves
the accuracy of key MU parameters in hdEMG
decomposition and remains an essential component of
current analysis pipelines, particularly in lower-quality
signals and when analyzing recruitment properties.
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