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Manual editing significantly improves the 

accuracy of motor unit recruitment 

threshold and discharge rate assessment 

from synthetic high-density surface 

electromyograms   

Abstract. This study examined the influence of manual 

editing on the accuracy of motor unit (MU) metrics 

derived from high-density surface EMG. Seven operators 

with varying levels of experience manually edited 

synthetic datasets from the Soleus and Biceps Brachii. 

We then calculated recruitment threshold (ReTh), 

derecruitment threshold (DeTh), discharge rate (DR), 

recruitment discharge rate (ReDR), and derecruitment 

discharge rate (DeDR) before and after editing. The 

effects of operator’s experience, contraction level, initial 

pulse-to-noise ratio (PNR), signal-to-noise ratio (SNR), 

muscle type, and editing status were analyzed. 

 Manual editing significantly improved accuracy only 

for ReTh and DR, whereas with other metrics, it only had 

a minor, insignificant effect. Higher initial PNR 

consistently reduced errors across all metrics. 

Contraction level strongly influenced all metrics, 

whereas muscle type and SNR had minimal impact—SNR 

was significant only for DeTh, and muscle type only for 

ReTh. Operator’s experience did not significantly affect 

any metric. Overall, these results indicate that manual 

editing is critical for reliable estimation of ReTh and DR, 

but less essential for DeDR, particularly when initial 

PNR is high. 

 

1 Introduction 

Automatic decomposition methods for high-density 

electromyography (hdEMG) lack awareness of the 

experimental protocol or subject-specific factors [10], 

often making manual editing of decomposition results 

necessary. Manual editing is the process where operators 

carefully inspect all decomposed motor units (MUs) and 

correct errors that arise during the automatic 

segmentation. The algorithm may misclassify MU pulses 

as noise, or vice versa, due to the interference from other 

MUs or background noise. During manual editing, 

operators fix these segmentation errors by adding 

missing pulses or removing duplicates. They also 

eliminate low-quality MUs—those dominated by noise 

or with too few discharges to be reliable. In cases where 

different MUs have very similar action potential shapes, 

the algorithm may incorrectly merge them into a single 

MU. Operators then need to separate these merged MUs, 

ensuring their accurate and complete representation.  

Although the importance of manual editing has been 

acknowledged, there is still a limited understanding of 

how this editing process affects commonly used MU 

metrics. Typically, MU recruitment is assessed through 

recruitment threshold (ReTh) and recruitment discharge 

rate (ReDR) [12], whereas MU derecruitment is 

evaluated using derecruitment threshold (DeTh) and 

derecruitment discharge rate (DeDR) [13]. 

Previous research [5], [11] has shown that effective 

manual editing demands substantial expertise, leading to 

the development of various tutorials [10], [4]. Despite 

these resources, editing results can vary significantly 

between operators, influenced by factors such as pulse-

to-noise ratio (PNR) [14], operator’s experience, and 

occasionally the muscle under study. At the same time, 

automatic decomposition is constantly improving, 

gradually decreasing the need for manual editing.  

However, the implications of these differences for 

MU metric accuracy remain unclear. Specifically, it is 

not fully understood how critical expert knowledge is, 

and what level of error occurs if signals remain manually 

unedited. In this study, we examined the impact of 

manual editing on the accuracy of the most commonly 

analysed MU metrics. 

 

2 Methods 

We generated synthetic hdEMG signals using 13×21 

and 10×9 electrode arrays for the Soleus (SO) and Biceps 

Brachii (BB), respectively, with an interelectrode 

distance of 5 mm. We simulated 200 MUs for the SO 

using the simulator from [1], and 500 MUs for the BB 

using the simulator from [2]. Two separate muscle 

realizations were created for each muscle, with MU 

territories randomly distributed in each realization. 

MU discharge patterns followed the model described 

in [3]. MU sizes and recruitment thresholds were 

sampled from exponential distributions, resulting in 

many small, low-threshold MUs and progressively fewer 

large, high-threshold MUs. Contraction durations were 

set to 20 seconds, with contraction intensities at 10%, 

30%, 50%, and 70% of the maximum voluntary 
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contraction (MVC). We added the colored noise 

(bandwidth 20-500 Hz) to the generated signals, creating 

signals with three different signal-to-noise ratios (SNRs): 

15 dB, 20 dB, and infinite (no noise). In total, 48 

synthetic signals were produced, with 24 corresponding 

to each muscle. 

All signals were decomposed automatically using the 

Convolution Kernel Compensation (CKC) method [6], 

implemented in the DEMUSE tool (version 6.0, 

University of Maribor, Slovenia). The decomposition 

was performed with the following settings: 50 runs per 

decomposition, band-pass filtering of the hdEMG signals 

using a 4th-order Butterworth filter with a 20–500 Hz 

passband, no spatial filtering, and automatic selection of 

the top 95% highest-quality hdEMG channels. The CKC 

decomposition identified an average of 17.6 ± 3.5 MUs 

for the SO muscle and 8.6 ± 3.8 MUs for the BB muscle. 

The average initial PNR values were 40.1 ± 12 dB for SO 

and 33.4 ± 8.9 dB for BB.  

Seven human operators (they are all listed as 

coauthors) with different levels of experience edited the 

signals. The level of experience was determined by the 

number of previously edited signals; therefore, we 

included two beginners, who had edited fewer than 50 

signals, three semi-experienced operators, who had 

edited 51-1000 signals, and two experts, who had edited 

more than 1000 signals [5]. Before the editing procedure, 

human operators were given a written tutorial [4] to 

standardise the editing process. 

 

 

Figure 1. A) A visual representation of MU, its pulse train, 

discharges, and simulated excitation, along with marked 

discharges that were accounted for in the calculation of DR. B), 

C) A visualised representation of ReTh and DeTh with marked 

discharges that were accounted for in the calculation of reDR 

and deDR. 

While human operators were editing the signals, log 

files were automatically created, saving all the used 

actions with a corresponding time stamp, allowing us to 

precisely calculate the editing time [5]. We inspected the 

ReTh, DeTh, discharge rate (DR), ReDR, and DeDR of 

signals before and after editing.  

The DR was calculated by dividing the total number 

of discharges by the signal duration in seconds (Fig. 1A). 

The ReTh and DeTh were defined as the force level at the 

time of the first and the last discharge, respectively. The 

ReDR and DeDR were computed as the DR based on the 

first and last four MU discharges, respectively (Fig. 1B, 

Fig. 1C). 

ReTh, DeTh, DR, ReDR, and DeDR were evaluated 

for all signals before and after manual editing and 

compared to the ground truth values obtained from the 

simulated reference signals. Errors were quantified as the 

absolute difference between measured and reference 

values. 

Statistical analyses were conducted in R (version 

4.2.2; R Foundation for Statistical Computing, Vienna, 

Austria) using linear mixed models (LMMs) 

implemented in the lme4 package [7]. The LMMs 

included the initial PNR value as a continuous fixed 

effect, muscle, operator’s experience, SNR, and whether 

the signal was edited or not (editing status) as categorical 

fixed effects, and contraction level as an ordered fixed 

effect. Simulated subject ID and operators’ ID were 

included as random intercepts to account for within-

subject and within-operator variability. Separate models 

were fitted for each outcome variable: ReTh, DeTh, DR, 

ReDR, and DeDR. 

Data distribution was evaluated using histograms, 

quantile-quantile plots of residuals, and plots of raw 

residuals against lagged residuals. Statistical significance 

was defined at a p-value threshold of 0.05 and assessed 

using the ANOVA function from the lmerTest package 

[8]. Pairwise post hoc comparisons of estimated marginal 

means were conducted using the Tukey adjustment for 

multiple testing, implemented via the emmeans package 

[9]. 

 

3  Results 

Table 1. Mean ± standard deviation (AVG ± SD) of assessment 

errors for all outcome variables (ReTh, DeTh, DR, ReDR, and 

DeDR), excluding zero-value errors. Percentages of errors are 

shown in parentheses. 

 Unedited  

(AVG ± SD) 

Edited  

(AVG ± SD) 

ReTh error  

(% MVC) 

2.2 ± 3.1 (10%) 2.6 ± 3.8 (6%) 

DeTh error  

(% MVC) 

 1.8 ± 2.5 (8%) 3 ± 3.7 (5%) 

DR error  

(Hz) 

0.8 ± 1.5 (70%) 0.3 ± 0.7 (17%) 

ReDR error  

(Hz) 

0.1 ± 0.4 (13%) 0.2 ± 0.5 (6%) 

DeDR error  

(Hz) 

0.1 ± 0.4 (13%) 0.2 ± 0.5 (6%) 

 

On average, operators needed 39 ± 87 s for editing 

signals from BB, and 25 ± 65 s for signals from SO. The 
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ReTh error was influenced by the contraction level (p = 

0.003, F = 4.6), with significantly higher error at 10% 

compared to 30% of MVC (p = 0.0006; Figure 2A). 

Muscle type also significantly (p = 0.0002, F = 13.1) 

affected the ReTh, with error being lower for the BB 

compared to the SO (p = 0.0003). Additionally, the initial 

PNR was negatively correlated with the ReTh error (p < 

0.0001, F = 151.2). Editing status was significant (p = 

0.009, F = 6.8), indicating that manual editing reduced 

errors (p = 0.009; Figure 3A; Table 1). In contrast, the 

operator’s experience (p = 0.7175, F = 0.5) and SNR (p 

= 0.2215, F = 1.5) did not significantly affect the ReTh 

error. 

The DeTh error was significantly affected by the 

contraction level (p = 0.0354, F = 2.9), with lower error 

observed at 10% compared to 50% of MVC (p = 0.0011; 

Figure 2B). The initial PNR was positively correlated 

with the DeTh error (p < 0.0001, F = 52.8), and the SNR 

also had a significant effect (p < 0.0001, F = 10.1), with 

lower errors at Inf dB compared to 15 dB (p < 0.0001) 

and 20 dB (p = 0.0139). In contrast, muscle type (p = 

0.72, F = 0.2), operator’s experience (p = 0.5886, F = 

0.6), and editing status (p = 0.9123, F = 0.1; Figure 3B; 

Table 1) did not significantly influence the DeTh error. 

 

 

Figure 2. Comparison of A) Recruitment threshold (ReTh), B) 

Derecruitment Threshold (DeTh), C) Discharge rate (DR), and 

D) Recruitment discharge rate (ReDR) of different contraction 

levels as accumulated across the simulated muscle BB and SO. 

Black vertical whiskers denote estimated marginal means with 

95% confidence intervals; Horizontal lines indicate significant 

differences: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. 

Contraction level significantly affected the DR error 

(p < 0.0001, F = 18.6), with lower errors observed at 

lower than higher contraction levels. Significant 

differences were found when comparing 10% to 50% (p 

< 0.0001) and 70% (p < 0.0001), as well as when 

comparing 30% to 50% (p < 0.0001) and 70% (p = 0.001) 

of MVC as visualized in Figure 2C. The initial PNR was 

negatively correlated with the DR error (p < 0.0001, F = 

331). Editing status also had a significant effect (p < 

0.0001, F = 636.7), with lower errors observed after 

manual editing compared to before (p < 0.0001; Figure 

3C; Table 1). In contrast, muscle type (p = 0.0556, F = 

12.5), operator’s experience (p = 0.8539, F = 0.2), and 

SNR (p = 0.2303, F = 1.5) did not significantly influence 

the DR error. 

The ReDR error was significantly influenced by the 

contraction level (p = 0.0388, F = 2.8), with higher errors 

observed at higher contraction levels. There was a 

significant difference between 70% and 50% (p = 0.0487; 

Figure 2D) of MVC. The initial PNR was negatively 

correlated with the ReDR error (p < 0.0001, F = 39.4). 

Muscle type (p = 0.7915, F = 0.1), operator’s experience 

(p = 0.6355, F = 0.5), SNR (p = 0.0598, F = 2.8), and 

editing status (p = 0.5197, F = 0.4; Figure 3D; Table 1) 

did not significantly affect the ReDR error. 

The DeDR error was positively correlated with the 

contraction level (p < 0.0001, F = 16) and negatively 

correlated with the initial PNR (p < 0.0001, F = 25.9). 

The error was highest at 70% compared to 10% (p < 

0.0001), 30% (p < 0.0001), and 50% of MVC (p < 

0.0001). No significant effects were found for muscle 

type (p = 0.6595, F = 0.3), operator’s experience (p = 

0.589, F = 0.6), SNR (p = 0.1267, F = 2.1), or editing 

status (p = 0.3686, F = 0.8; Table 1). 

 

 

Figure 3. Comparison of A) Recruitment threshold (ReTh), B) 

Derecruitment Threshold (DeTh), C) Discharge rate (DR), and 

D) Recruitment discharge rate (ReDR) of edited and unedited 

signals. Black vertical whiskers denote estimated marginal 

means with 95% confidence intervals; Horizontal lines indicate 

significant differences: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. 

 

4 Discussion 

In this study, we showed that manual editing of 

hdEMG decomposition results reduces errors in key MU 

metrics, particularly DR and ReTh. In contrast, the 

effects on DeTh, ReDR, and DeDR were less 

pronounced. Additionally, initial PNR consistently 
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correlated with assessment accuracy across all evaluated 

parameters, which aligns with its established role as a 

metric of MU identification accuracy [14]. The 

contraction level also influenced all MU metrics, where 

higher errors were induced by higher contraction levels 

for ReTh and by lower contraction levels for DeTh, DR, 

ReDR, and DeDR. Higher contraction levels in most 

cases increase the DR, number of active MUs, and MU 

crosstalk, causing the manual editing to become more 

challenging and therefore more prone to errors for most 

of the MU metrics. 

These findings align with previous reports 

highlighting the necessity of manual editing in 

decomposition workflows [5], [11], and extend current 

knowledge by quantifying the error reduction across a 

specific MU metric. While prior studies have noted 

variability in decomposition results between operators 

[5], our results show that, despite such variability, 

manual editing systematically improves the accuracy of 

MU analysis, particularly under conditions of lower PNR 

and higher contraction levels. 

From a practical perspective, our findings suggest 

that manual editing remains a critical step in hdEMG 

decomposition, particularly when precise DR and ReTh 

assessments are required. However, in datasets with high 

initial PNR, the relative benefits of editing may be 

reduced, indicating a potential threshold above which 

manual editing may be deprioritized without 

substantially compromising accuracy. 

This study has several limitations, including the 

analysis only having been performed on synthetic 

hdEMG signals (synthetic SO and BB muscles), where 

MU spike trains are usually more accurately identified by 

the automatic decomposition with higher initial PNR 

compared to the experimental signals. 

In conclusion, manual editing substantially improves 

the accuracy of key MU parameters in hdEMG 

decomposition and remains an essential component of 

current analysis pipelines, particularly in lower-quality 

signals and when analyzing recruitment properties. 
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