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Motor unit editing time in high-density EMG 

decomposition decreases with the operator’s 

experience and pulse-to-noise ratio but does 

not depend on simulated muscle 

 
Abstract. Manual editing of decomposition results 

represents an important but time-costly aspect of motor 

unit (MU) identification from a high-density surface 

electromyogram (hdEMG). We analysed the editing time 

and number of actions used to manually edit the 

decomposition results in synthetic signals. We simulated 

the Biceps Brachii (BB) and Soleus (SO) muscles at four 

different contraction levels: 10%, 30%, 50%, and 70% of 

maximum voluntary contraction (MVC). Gaussian noise 

was added at three signal-to-noise ratios (SNR): 15 dB, 

20 dB, and Inf dB. Signals were decomposed into 

individual MU contributions using the Convolutional 

Kernel Compensation (CKC) method. The initial Pulse-

to-Noise Ratio (PNR) was calculated to estimate 

automatic MU identification accuracy.    

 Nine operators with different levels of experience and 

research backgrounds manually edited the 

decomposition results. Log files were created to 

determine the time needed to edit MU, the number of all 

used actions, and add or delete MU discharge actions.   

 The initial PNR value of MUs and SNR correlated 

with editing time, number of all used actions, add actions 

and delete actions. Contraction level and muscle were 

not significant factors. The operator’s background and 

category, on the other hand, influenced the editing time 

and the number of used actions. 

 

1 Introduction 

High-density surface electromyograms (hdEMG) are 

extensively used in research fields such as sports science 

[9], rehabilitation [3] and physiotherapy [11]. The 

decomposition of the hdEMG enables valuable insight 

into the behaviour of motor units (MUs). A MU consists 

of an alpha motor neuron and its innervated muscle 

tissue. With the decomposition of hdEMG, we can 

observe neural codes from the central nervous system and 

shapes of MU action potentials (MUAPs), which contain 

all the anatomic and geometric information about the 

muscle we are investigating.  

 The automatic decomposition algorithms using the 

blind source separation principles [6] decompose 

hdEMG without knowing the experimental protocol, the 

measured subject, or the acquired signal quality. 

Therefore, a human operator must manually inspect the 

decomposition results and improve the segmentation of 

identified MU spikes into MU discharges. The latter 

includes optimising the MU filter identified by the 

automatic decomposition techniques. Even though the 

goal of manual editing is clear, and there are many 

tutorials on how to edit the decomposition results 

properly [1], there are still many situations where the 

classification of MU discharges is not a trivial decision. 

 In this study, we investigated how editing strategies 

and time spent to edit one MU depend on the experiences 

of a human operator and properties of the hdEMG signal: 

pulse-to-noise ratio (PNR), level of muscle contraction, 

muscle, and signal-to-noise ratio (SNR). 

 

2 Methods 

2.1 Signal dataset 

We simulated synthetic signals of Soleus (SO) and 

Biceps Brachii (BB) muscles. In SO, 200 MUs were 

simulated using the simulator in [2]. In BB, 200 MUs 

were simulated using the simulator in [4]. Two different 

muscle realisations were simulated for each muscle type 

with randomly distributed MU territories in each 

realisation. 

 MU discharge patterns were generated by the model 

described in [5]. The MU size and the recruitment 

threshold were exponentially distributed, with many 

small and low-threshold MUs and exponentially fewer 

large and high-threshold MUs. The length of contractions 

was set to 20 s, and contraction levels were set to 10%, 

30%, 50% and 70% of maximum voluntary contraction 

(MVC). The hdEMG signals were detected by the 9×10 

electrode array. Three different SNRs were simulated 

(15, 20, and Inf dB). Altogether, there were 48 simulated 

signals (24 for SO and 24 for BB muscle). 

  

2.2 Automatic decomposition 

All signals were decomposed using the automatic 

Convolution Kernel Compensation (CKC) method [9], 

built into the DEMUSE tool, version 6.3. The following 

settings were used for automatic decomposition: 50 

decomposition runs, band-pass filtering of hdEMG 

signals with the 4th order Butterworth filter (20-500 Hz), 
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no spatial filtering applied, and automatic selection of 

95% of best quality hdEMG channels. CKC 

decomposition yielded 17.6 ± 3.5 (SO) and 8.6 ± 3.8 

MUs (BB). The average initial PNR value was 40.1 ± 12 

dB for SO and 33.4 ± 8.9 dB for BB. 

 

2.3 Human operators 

Nine human operators (co-authors of this contribution) 

with different levels of experience and different 

background knowledge edited the same set of hdEMG 

signals. We divided operators into three levels of 

experience based on the estimated number of previously 

edited signals (Table 1). The operators were all familiar 

with the manual editing process and all the functionalities 

available in the DEMUSE tool [7]. 

 

Table 1. Human operators with experience level, number of 

edited signals, and background (PHY – Physiology, CS – 

Computer Science). 

Ope-

rator 

Level of 

experience 

No. of edit- 

ed signals 

Back-

ground 

O1 Beginner 10 - 50 PHY 

O2 Beginner 10 - 50 PHY 

O3 Beginner 10 - 50 CS  

O4 Beginner 10 - 50 CS  

O5 Semi-experienced 51-1000 CS  

O6 Semi-experienced 51-1000 CS  

O7 Semi-experienced 51-1000 PHY 

O8 Expert > 1000 CS  

O9 Expert > 1000 PHY 

 

 

2.4 Experimental protocol 

To standardise the editing process, all the operators were 

required to read a short manual. To accurately measure 

the editing time, they were asked to use a particular 

version of DEMUSE, which automatically generated log 

files that included information on used actions and their 

corresponding timestamps. Log files were used to 

calculate the editing time per MU, the number of all 

actions per MU, the number of actions used to add MU 

discharges (add actions), and the number of actions used 

to remove MU discharges (delete actions).  

 Statistical analysis was performed using the linear 

mixed models (lmer) in RStudio using lmer4 package. 

All results were transformed using the log transformation 

to make the residuals normally distributed. Lmer models 

were calculated for every outcome variable separately 

with initial PNR, SNR, operator’s experience, operator’s 

background, contraction level and type of simulated 

muscle set as fixed factors and simulated muscle 

(subject) as a random factor.  

 

3  Results 

The editing time was negatively correlated with the initial 

PNR value (p < 0.0001, F = 808; Figure 1A). The editing 

time also depended on the SNR value (p = 0.0003, F = 

8.2; Figure 2A) as operators needed more time to edit 

MUs in signals with the SNR of 15 dB than 20 dB (p = 

0.0095) and Inf dB (p = 0.0003). The operator’s 

experience (p < 0.0001, F = 70.8; Figure 2B) and 

operator’s background (p < 0.0001, F = 81.6; Figure 2C) 

were significant factors. Experts edited MUs more 

quickly than beginners (p < 0.0001) and semi-

experienced operators (p < 0.0001). Operators with a 

background in physiology were faster at editing MUs 

than engineers (p < 0.0001). Contraction level (p = 0.084, 

F = 2.2) and muscle type (p = 0.198, F = 3.2) were not 

significant factors. 

 Similarly, the operators needed more actions to edit 

MUs with lower initial PNR (p < 0.0001, F = 780.3; 

Figure 1B) and lower SNR (p < 0.0001, F = 16; Figure 

2D). Results show a significant increase in the number of 

all actions with MUs in signals with SNR of 15 dB 

compared to the 20 dB (p < 0.0001) and Inf dB (p < 

0.0001). Experienced operators made fewer actions (p < 

0.0001, F = 37.7; Figure 2E) compared to semi-

experienced operators (p < 0.0001) and beginners (p < 

0.001) The operator’s background was also a significant 

factor (p = 0.003, F = 8.9; Figure 2F) as physiologists 

required fewer actions compared to the engineers (p = 

0.003). Again, simulated contraction level (p = 0.243, F 

= 1.4) and muscle (p = 0.214, F = 3) did not influence the 

number of all used actions. 

 The number of add actions decreased with the initial 

PNR value (p < 0.0001, F = 605.2; Figure 1C) and SNR 

(p = 0.033, F = 3.4). Operators needed fewer add actions 

with signals that were generated with the SNR of 15 dB 

compared to 20 dB (p = 0.024). The number of used add 

actions decreased with the level of operator’s experience 

(p < 0.0001, F = 25.2) as beginners needed to add 

discharges more time than semi-experienced operators (p 

= 0.0164) and experts (p < 0.0001). Also, semi-

experienced operators needed more add actions than the 

experts (p < 0.0001). The background of the operators 

was not a significant factor (p = 0.626, F = 0.2) for add 

actions, nor was the contraction level (p = 0.053, F = 2.6) 

or muscle type (p = 0.68, F = 0.2). 

 The number of delete actions also depended on the 

initial PNR value (p < 0.0001, F = 687; Figure 1D) and 

SNR (p < 0.0001, F = 21.6). Operators used more delete 

actions with signals at SNR of 15 dB than 20 dB (p < 

0.0001) and Inf dB (p < 0.001). The operator’s 

experience did not influence the number of deletes (p = 

0.256, F = 1.4). Physiologists again needed fewer delete 

actions (p < 0.0001, F = 33.8) than engineers (p < 

0.0001). The operators needed fewer delete actions with 

SO than with BB (p = 0.044).  
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Figure 2: A) Editing time at different SNR values. B) Editing time of human operators with different levels of experience (Beg-

Beginners, SE-Semi-experienced, Exp-Experts). C) Editing time of operators with different background. D) Number of all used 

actions within different SNR values. E) Number of all used actions across different operator's experiences. F) Number of all used 

actions across different operator's backgrounds. 

 

Figure 1: A) Editing time as a function of the initial PNR value. B) Number of all used actions as the function of the initial PNR 

value. C) Number of actions, used to add MU discharges as a function of the initial PNR value. D) Number of actions used to 

delete MU discharges as a function of the initial PNR value. 
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4 Discussion 

The initial PNR value was a significant factor in all four 

outcome variables: editing time, number of all used 

actions, number of add actions and number of delete 

actions. The PNR value assesses the accuracy of the 

identified MU spike train and correlates positively with 

the sensitivity and precision and negatively with the false 

alarm rate [8]. MUs with lower initial PNR values were 

less accurately identified and needed more actions.  The 

SNR was also an important factor in all the outcome 

variables. 

 Even though a higher contraction level causes an 

increase in the frequency of MU discharges and the 

number of recruited MUs, this study did not show a 

significant correlation with any of the outcome variables.  

 The operator’s experience was a significant factor in 

most outcome variables: editing time, number of all used 

actions and number of add actions. However, it was not 

significant in the number of delete actions. These results 

suggest that with experience, operators gain a better 

understanding of MU behaviour, making editing steps 

faster.  

 Although manual editing may seem like a problem 

that mainly belongs to a signal processing field, there is 

still a need for physiological knowledge with which 

operators can understand and correctly classify 

discharges. With the more advanced knowledge of MU 

behaviour, manual editing becomes easier and 

demonstrates in shorter editing times and fewer actions 

needed by the operators with a physiological background. 

 Muscle was only significant with the number of 

delete actions, as operators needed fewer delete actions 

with the SO than the BB muscle. The latter is probably a 

consequence of MUs in SO having a higher initial PNR 

(40.1 ± 12 dB) than BB (33.4 ± 8.9 dB). 

 In conclusion, we performed an experiment where 

nine operators with different experience levels and 

different backgrounds manually edited the same dataset 

of decomposition results of synthetic signals. Results 

showed that the initial PNR and SNR correlate negatively 

with the editing time, number of all used actions, number 

of add actions and number of delete actions. Experience 

influenced the editing time, number of actions and 

number of add MU discharge actions. Results also 

showed that physiologists are faster and use fewer delete 

actions than engineers. Muscle was a significant factor in 

none of the outcome variables. 
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